Search results for "Universal graph"
showing 2 items of 2 documents
Two graphs with a common edge
2014
Let G = G1 ∪ G2 be the sum of two simple graphs G1,G2 having a common edge or G = G1 ∪ e1 ∪ e2 ∪ G2 be the sum of two simple disjoint graphs G1,G2 connected by two edges e1 and e2 which form a cycle C4 inside G. We give a method of computing the determinant det A(G) of the adjacency matrix of G by reducing the calculation of the determinant to certain subgraphs of G1 and G2. To show the scope and effectiveness of our method we give some examples
Distance graphs and the T-coloring problem
1999
Abstract The T-coloring problem is, given a graph G = (V, E), a set T of nonnegative integers containing 0, and a ‘span’ bound s ⩾ 0, to compute an integer coloring f of the vertices of G such that |f(ν) − f(w)| ∉ T ∀νw ∈ E and max f − min f ⩽ s. This problem arises in the planning of channel assignments for broadcast networks. When restricted to complete graphs, the T-coloring problem boils down to a number problem which can be solved efficiently for many types of sets T. The paper presents results indicating that this is not the case if the set T is arbitrary. To these ends, the class of distance graphs is introduced, which consists of all graphs G : G ≅ G(A) for some (finite) set of posi…